

ASSIGNMENT

Transfer function for industrial system

 ()
()

 ()

()

CASE I; Controller 1:

 • Overshoot less than 5%

• Rise time less than 1 seconds

• Settling time of 2% error less than 4 seconds

Using root locus criteria, we create from command window the transfer function for G

s = tf('s');

G = (s+1)/(s^3+4*s^2+5*s)

And see its root locus chart and poles typing the commands:

rlocus(G)

poles=pole(G)

ans =

 0.0000 + 0.0000i

 -2.0000 + 1.0000i

 -2.0000 - 1.0000i

Here we can see that all poles are located to left semi plane, that makes the system marginally

stable. The main idea of root locus design is to predict the closed-loop response from the root

locus plot which depicts possible closed-loop pole locations and is drawn from the open-loop

transfer function. Then by adding zeros and/or poles via the controller, the root locus can be

modified in order to achieve a desired closed-loop response.

In general, the real part of a pole indicates how quickly the transient portion of the corresponding

mode decays to zero (assuming negative real part). Therefore, if you have a transfer function

which has one (or more) poles much farther to the left in the complex plane (more negative) than

the other poles, their effect on the dynamic response will be hidden by the slower, more dominant

poles.

Now we can start other matlab tool called sisotool typing the command

Sisotool(G)

Here we can indicate some of design criteria as follows.

After indicate overshoot less than 5% and stting time less than 4s, we’ll see this

Took close loop poles (pink) and move it slowly to black lines, this give this situation

The step response would be

This means, that we don’t have overshoot, but while other close loop pole is behind vertical line

we can’t achieve the requirement for settling time less than 4 s.

INTEGRAL CONTROL

so first we have to test with integral control.

We need an integrator in the controller (not just in the system) to remove the steady-state error

due to a constant disturbance.

C = 1/s;

>> sisotool(C*G)

As far as can we saw, the system never will be stable with only integral control, let´s see its

transient response.

Here is possible observe that the system never will meet the requirements with only integral

control, the transient response would be undamped. Therefore we need other control type.

PI CONTROL

Now, let's modify the integral controller to a PI controller. Using PI instead of I control adds a zero to the open-

loop system. We'll place this zero at s = -1. The zero must lie between the open-loop poles of the system in

this case so that the closed-loop system will be stable.

C = (s + 1) / s;

>> sisotool(C*G)

We have managed to stabilize the system and achieve zero steady-state error to a constant disturbance, but

the system is still not fast enough and its overshoot is high.

PID CONTROL

In order to pull the root locus further to the left, to make it faster, we need to place a second open-loop zero,

resulting in a PID controller. After some experimentation, we place the two PID zeros at s = -1.5 and s = -1.75.

Change the lines defining the controller in your m-file to the following. Re-run your m-file and you will generate

a plot like the one shown below.

C = (s + 1.5)*(s + 1.75) / s;

>> sisotool(C*G)

Here we take poles close loop (pink) and move them very close to vertical line to make the

response a little bit faster. The transient response is:

And with this criteria we achieve our designs requirements. The final controller is:

C = 14.9*(s + 1.5)*(s + 1.75) / s;

CL=feedback(C*G,1)

CL =

 14.9 s^3 + 63.32 s^2 + 87.54 s + 39.11

 --

 s^4 + 18.9 s^3 + 68.32 s^2 + 87.54 s + 39.11

Continuous-time transfer function.

>> step(CL)

To implement this control in simulink, is possible use a transfer function block and set the data for

transfer function close loop, as follows

And the scope plot is:

CASE II; Controller 2:

• Overshoot less than 20%

• Rise time less than 0.5 seconds

• Steady-state error less than 5%.

We going to follow the same steps used in case i.

This would be the root locus for G conditioning the shades for 20% overshot and 4s of settling

time.

INTEGRAL CONTROL

I = 1/s;

>> sisotool(I*G)

As we could saw in case I, a pure integral control is not recommended because the system is not

stable. Let´s confirm this with transient response

As we can see, the system in unstable, the response is undamped.

PI CONTROL

C = (s + 3) / s;

>> sisotool(C*G)

The response is better than pure integral control, but the overshot is high and the response is

slow, lets confirm this with transient chart.

PID CONTROL

we select poles for -2 and -2.5 considering that need a faster response, for that our poles has to be

located to the left of vertical line.

PID = (s + 2)*(s + 2.5) / s;

>> sisotool(C*G)

Selecting with mouse the poles of right we moved them to limit, over vertical line to achieve a

faster response.

As we can see in transient response, our controller met all requirements.

The controller is:

PID = 2.4337* (s + 2)*(s + 2.5) / s

And close loop transfer function is

CL=feedback(PID*G,1)

CL =

 2.434 s^3 + 13.39 s^2 + 23.12 s + 12.17

 s^4 + 6.434 s^3 + 18.39 s^2 + 23.12 s + 12.17

Continuous-time transfer function.

Step(CL)

Now to implement controllers 1 and 2 in Simulink we use transfer function block and set the

arrangement as follows:

This is the close loop transfer function.. the simplified version of typical control block. The

response obtained is:

